Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - 4.5 Exercises - Page 302: 60

Answer

$$1$$

Work Step by Step

$$\eqalign{ & \int_0^2 {\frac{x}{{\sqrt {1 + 2{x^2}} }}} dx \cr & {\text{Integrating }}\int {\frac{x}{{\sqrt {1 + 2{x^2}} }}} dx \cr & u = 1 + 2{x^2},{\text{ }}du = 4xdx,{\text{ }}dx = \frac{1}{{4x}}du \cr & \int {\frac{x}{{\sqrt {1 + 2{x^2}} }}} dx = \int {\frac{x}{{\sqrt u }}} \left( {\frac{1}{{4x}}} \right)du \cr & = \frac{1}{4}\int {\frac{1}{{\sqrt u }}} du \cr & = \frac{1}{4}\left( {\frac{{{u^{1/2}}}}{{1/2}}} \right) + C \cr & = \frac{2}{4}\sqrt u + C \cr & = \frac{1}{2}\sqrt u + C \cr & {\text{Write in terms of }}x,{\text{ }}u = 1 + 2{x^2} \cr & = \frac{1}{2}\sqrt {1 + 2{x^2}} + C \cr & {\text{Then,}} \cr & \int_0^2 {\frac{x}{{\sqrt {1 + 2{x^2}} }}} dx = \left[ {\frac{1}{2}\sqrt {1 + 2{x^2}} } \right]_0^2 \cr & \left[ {\frac{1}{2}\sqrt {1 + 2{x^2}} } \right]_0^2 = \frac{1}{2}\left[ {\sqrt {1 + 2{x^2}} } \right]_0^2 \cr & = \frac{1}{2}\left[ {\sqrt {1 + 2{{\left( 2 \right)}^2}} } \right] - \frac{1}{2}\left[ {\sqrt {1 + 2{{\left( 0 \right)}^2}} } \right] \cr & = \frac{1}{2}\sqrt 9 - \frac{1}{2}\sqrt 1 \cr & = 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.