Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - 4.5 Exercises - Page 302: 55

Answer

$\int_{-1}^{1} x(x^{2}+1)^3dx = 0$

Work Step by Step

Let $ u = x^2 + 1, du = 2x dx$ $\int_{-1}^{1} x(x^{2}+1)^3dx $ $= \frac{1}{2}\int_{-1}^1 {(x^{2}+1)}^{3}(2x)dx$ $= \frac{1}{2} \int_{-1}^1 u^{3}du$ $= \frac{1}{2} [\frac{u^4}{4}]_{-1}^1 $ $=\frac{1}{8} [(x^{2}+1)^4]_{-1}^1 $ $=\frac{1}{8}[(2^4)-(2^4)] $ $=\frac{1}{8}[0] $ $=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.