Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - 4.5 Exercises - Page 302: 61

Answer

$$\frac{1}{2}$$

Work Step by Step

$$\int_{1}^{9} \frac{1}{\sqrt{x} (1+\sqrt{x})^2} dx$$ $u=1+\sqrt{x}$ $du=\frac{1}{2} x^{-\frac{1}{2}} dx$ $2du=\frac{1}{\sqrt{x}} dx$ $$2\int_{1}^{9} \frac{1}{u^2} du$$ $2 * _{1}^{9} |-u^{-1}$ $-2 * _{1}^{9} | \frac{1}{1+\sqrt{x}}$ $-2(\frac{1}{4} - \frac{1}{2})$ $$-2(-\frac{1}{4})=\frac{1}{2}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.