Answer
$$2$$
Work Step by Step
$$\int_{0}^{4} \frac{1}{\sqrt{2x+1}} dx$$
$u=2x+1$
$du=2dx$
$\frac{1}{2}du=dx$
$$\frac{1}{2} \int_{0}^{4} u^{-\frac{1}{2}}du$$
$\frac{1}{2}* _{0}^{4} |2u^{\frac{1}{2}}$
$_{0}^{4}|\sqrt{2x+1}$
$(\sqrt 9 - \sqrt 1)$
$$=(3-1)=2$$