Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - 4.5 Exercises - Page 302: 65

Answer

$$\frac{{1209}}{{28}}$$

Work Step by Step

$$\eqalign{ & \int_0^7 {x\root 3 \of {x + 1} dx} \cr & {\text{Integrating }}\int {x\root 3 \of {x + 1} dx} \cr & u = x + 1,{\text{ }}x = u - 1,{\text{ }}dx = du \cr & \int {x\root 3 \of {x + 1} dx} = \int {\left( {u - 1} \right)\root 3 \of u } du \cr & = \int {\left( {{u^{4/3}} - {u^{1/3}}} \right)} du \cr & = \frac{3}{7}{u^{7/3}} - \frac{3}{4}{u^{4/3}} + C \cr & {\text{Write in terms of }}x,{\text{ }}u = x + 1 \cr & = \frac{3}{7}{\left( {x + 1} \right)^{7/3}} - \frac{3}{4}{\left( {x + 1} \right)^{4/3}} + C \cr & {\text{Then,}} \cr & \int_0^7 {x\root 3 \of {x + 1} dx} = \left[ {\frac{3}{7}{{\left( {x + 1} \right)}^{7/3}} - \frac{3}{4}{{\left( {x + 1} \right)}^{4/3}}} \right]_0^7 \cr & = \left[ {\frac{3}{7}{{\left( {7 + 1} \right)}^{7/3}} - \frac{3}{4}{{\left( {7 + 1} \right)}^{4/3}}} \right] - \left[ {\frac{3}{7}{{\left( {0 + 1} \right)}^{7/3}} - \frac{3}{4}{{\left( {0 + 1} \right)}^{4/3}}} \right] \cr & = \frac{{300}}{7} + \frac{9}{{28}} \cr & = \frac{{1209}}{{28}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.