Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - 4.5 Exercises - Page 302: 75

Answer

$$36$$

Work Step by Step

$$\eqalign{ & \int_{ - 3}^3 {\left( {{x^3} + 4{x^2} - 3x - 6} \right)} dx \cr & {\text{Write the integral as a sum of integrals }} \cr & = \int_{ - 3}^3 {{x^3}} dx + \int_{ - 3}^3 {4{x^2}} dx - \int_{ - 3}^3 {3x} dx - \int_{ - 3}^3 6 dx \cr & {\text{Where}} \cr & {x^3}:{\text{ Odd function}} \cr & 4{x^2}:{\text{Even function}} \cr & 3x:{\text{Odd function}} \cr & 6:{\text{Constant function}} \cr & {\text{Using }}\left( {{\text{THEOREM 4}}.{\text{16}}} \right) \cr & = 0 + 2\int_0^3 {4{x^2}dx} - 0 - 2\int_0^3 6 dx \cr & {\text{Integrating}} \cr & = 2\left[ {\frac{4}{3}{x^3}} \right]_0^3 - 2\left[ {6x} \right]_0^3 \cr & = 2\left[ {\frac{4}{3}{{\left( 3 \right)}^3}} \right] - 2\left[ {6\left( 3 \right)} \right] \cr & = 36 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.