Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - 4.5 Exercises - Page 302: 62

Answer

$\frac{{16}}{3}$

Work Step by Step

$$\eqalign{ & \int_1^5 {\frac{x}{{\sqrt {2x - 1} }}} dx \cr & {\text{Let }}u = 2x - 1,{\text{ }}x = \frac{1}{2}\left( {u + 1} \right),{\text{ }}dx = \frac{1}{2}du \cr & {\text{The new limits of integration are:}} \cr & x = 5 \to u = 9 \cr & x = 1 \to u = 1 \cr & \int_1^5 {\frac{x}{{\sqrt {2x - 1} }}} dx = \int_1^9 {\frac{1}{2}\left( {u + 1} \right)\left( {\frac{1}{{\sqrt u }}} \right)\left( {\frac{1}{2}} \right)} du \cr & = \frac{1}{4}\int_1^9 {\frac{{u + 1}}{{\sqrt u }}} du \cr & = \frac{1}{4}\int_1^9 {\left( {{u^{1/2}} + {u^{ - 1/2}}} \right)} du \cr & {\text{Integrating}} \cr & = \frac{1}{4}\left( {\frac{2}{3}{u^{3/2}} + 2{u^{1/2}}} \right)_1^9 \cr & = \frac{1}{4}\left( {\frac{2}{3}{{\left( 9 \right)}^{3/2}} + 2{{\left( 9 \right)}^{1/2}}} \right) - \frac{1}{4}\left( {\frac{2}{3}{{\left( 1 \right)}^{3/2}} + 2{{\left( 1 \right)}^{1/2}}} \right) \cr & {\text{Simplifying}} \cr & = 6 - \frac{2}{3} \cr & = \frac{{16}}{3} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.