Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - 4.5 Exercises - Page 302: 53

Answer

$$ - x - 2\sqrt {x + 1} + {C_1}$$

Work Step by Step

$$\eqalign{ & \int {\frac{{ - x}}{{\left( {x + 1} \right) - \sqrt {x + 1} }}} dx \cr & {\text{Integrate by substitution}} \cr & u = x + 1,{\text{ }}x = u - 1,{\text{ }}dx = du \cr & {\text{Substituting}} \cr & \int {\frac{{ - x}}{{\left( {x + 1} \right) - \sqrt {x + 1} }}} dx = \int {\frac{{ - \left( {u - 1} \right)}}{{u - \sqrt u }}} du \cr & = - \int {\frac{{u - 1}}{{u - \sqrt u }}} du \cr & {\text{Rationalizing the denominator}} \cr & = - \int {\frac{{u - 1}}{{u - \sqrt u }} \times \left( {\frac{{u + \sqrt u }}{{u + \sqrt u }}} \right)} du \cr & = - \int {\frac{{\left( {u - 1} \right)\left( {u + \sqrt u } \right)}}{{{u^2} - {{\left( {\sqrt u } \right)}^2}}}} du \cr & = - \int {\frac{{\left( {u - 1} \right)\left( {u + \sqrt u } \right)}}{{{u^2} - u}}} du \cr & {\text{Factor the numerator and denominator}} \cr & = - \int {\frac{{\sqrt u \left( {u - 1} \right)\left( {\sqrt u + 1} \right)}}{{u\left( {u - 1} \right)}}} du \cr & {\text{Divide}} \cr & = - \int {\frac{{\sqrt u + 1}}{{\sqrt u }}} du \cr & = - \int {\left( {1 + {u^{ - 1/2}}} \right)} du \cr & {\text{Integrating}} \cr & = - \left( {u + \frac{{{u^{1/2}}}}{{1/2}}} \right) + C \cr & = - u - 2\sqrt u + C \cr & {\text{Write in terms of }}x \cr & = - \left( {x + 1} \right) - 2\sqrt {x + 1} + C \cr & = - x - 1 - 2\sqrt {x + 1} + C \cr & {\text{Combine constants}} \cr & = - x - 2\sqrt {x + 1} + {C_1} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.