Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - 4.5 Exercises - Page 302: 67

Answer

$$2\left( {\sqrt 3 - 1} \right)$$

Work Step by Step

$$\eqalign{ & \int_{\pi /2}^{2\pi /3} {{{\sec }^2}\left( {\frac{x}{2}} \right)} dx \cr & {\text{Let }}u = \frac{1}{2}x,{\text{ }}du = \frac{1}{2}dx \cr & {\text{The new limits of integration are:}} \cr & x = \frac{{2\pi }}{3} \to u = \frac{1}{2}\left( {\frac{{2\pi }}{3}} \right) = \frac{\pi }{3} \cr & x = \frac{\pi }{2} \to u = \frac{1}{2}\left( {\frac{\pi }{2}} \right) = \frac{\pi }{4} \cr & {\text{Substituting}} \cr & \int_{\pi /2}^{2\pi /3} {{{\sec }^2}\left( {\frac{x}{2}} \right)} dx = \int_{\pi /4}^{\pi /3} {{{\sec }^2}u\left( 2 \right)} du \cr & = 2\int_{\pi /4}^{\pi /3} {{{\sec }^2}u} du \cr & {\text{Integrating}} \cr & = 2\left[ {\tan u} \right]_{\pi /4}^{\pi /3} \cr & = 2\left( {\sqrt 3 - 1} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.