Answer
$\dfrac{3x}{\sqrt[3]{9x^2y}}$
Work Step by Step
Simplify. $ \dfrac{\sqrt[3]{3x}}{\sqrt[3]y}$
Now, $ \dfrac{\sqrt[3]{3x}}{\sqrt[3]y}=(\dfrac{\sqrt[3]{3x}}{\sqrt[3]y})(\dfrac{\sqrt[3]{9x^2}}{\sqrt[3]{9x^2}})$
or, $=\dfrac{(\sqrt[3]{3x})(\sqrt[3]{9x^2})}{(\sqrt[3]y)(\sqrt[3]{9x^2})}$
$\implies \dfrac{3x}{\sqrt[3]{9x^2y}}$