Answer
$\frac{5\sqrt[5]{xy^4}}{2xy}$.
Work Step by Step
The given expression is
$=\frac{5}{\sqrt[5]{32x^4y}}$
Multiply the numerator and the denominator by $\sqrt[5]{xy^4}$
$=\frac{5}{\sqrt[5]{32x^4y}}\cdot \frac{\sqrt[5]{xy^4}}{\sqrt[5]{xy^4}}$
Use product rule.
$=\frac{5\sqrt[5]{xy^4}}{\sqrt[5]{32x^4y\cdot xy^4}}$
Simplify.
$=\frac{5\sqrt[5]{xy^4}}{\sqrt[5]{2^5x^5y^5}}$
$=\frac{5\sqrt[5]{xy^4}}{2xy}$.