Answer
$4\sqrt[3]{3}$.
Work Step by Step
The given expression is
$=\frac{12}{\sqrt[3]{9}}$
Factor the numerator and the denominator.
$=\frac{2^2\cdot 3^1}{\sqrt[3]{3^2}}$
Rewrite as an exponential expression.
$=\frac{2^2\cdot 3^1}{3^{\frac{2}{3}}}$
Divide factors. Subtract exponents on common bases.
$=2^2\cdot 3^{1-\frac{2}{3}}$
Simplify.
$=2^2\cdot 3^{\frac{3}{3}-\frac{2}{3}}$
$=2^2\cdot 3^{\frac{3-2}{3}}$
$=2^2\cdot 3^{\frac{1}{3}}$
Rewrite as a radical expression.
$=4\sqrt[3]{3}$.