Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 7 - Review Exercises - Page 577: 67

Answer

$\frac{7\sqrt[3]{4x}}{ x}$.

Work Step by Step

The given expression is $=\frac{14}{\sqrt[3]{2x^2}}$ Multiply the numerator and the denominator by $\sqrt[3]{(2x^2)^2}$. $=\frac{14}{\sqrt[3]{2x^2}}\cdot \frac{\sqrt[3]{(2x^2)^2}}{\sqrt[3]{(2x^2)^2}}$ Use product rule. $=\frac{14\sqrt[3]{(2x^2)^2}}{\sqrt[3]{(2x^2)\cdot (2x^2)^2}}$ Simplify. $=\frac{14\sqrt[3]{(2x^2)^2}}{\sqrt[3]{ (2x^2)^{2+1}}}$ $=\frac{14\sqrt[3]{(2x^2)^2}}{\sqrt[3]{ (2x^2)^{3}}}$ $=\frac{14\sqrt[3]{4x^4}}{ 2x^2}$ Factor the radicands. $=\frac{14\sqrt[3]{4x^3x}}{ 2x^2}$ Simplify. $=\frac{14\sqrt[3]{4x}x}{ 2x^2}$ Cancel common terms. $=\frac{7\sqrt[3]{4x}}{ x}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.