Answer
$\$2500,\$2000,\$1600,\$1280,\$1024,\$819.20,\$655.36,\$524.29,\$419.43,\$335.54$.
Work Step by Step
Consider the value of an LCD projector, $\$2500$.
Its resale value decreases by 20% each year. Thus, the value for the second year is 80% of the value for the first year.
For the second year:
$\begin{align}
& \text{LCD}=\frac{80}{100}\cdot 2500 \\
& =80\cdot 25 \\
& =2000
\end{align}$
For the third year:
$\begin{align}
& \text{LCD}=\frac{80}{100}\cdot 2000 \\
& =80\cdot 20 \\
& =1600
\end{align}$
For the fourth year:
$\begin{align}
& \text{LCD}=\frac{80}{100}\cdot 1600 \\
& =80\cdot 16 \\
& =1280
\end{align}$
For the fifth year:
$\begin{align}
& \text{LCD}=\frac{80}{100}\cdot 1280 \\
& =80\cdot 128 \\
& =1024
\end{align}$
For the sixth year:
$\begin{align}
& \text{LCD}=\frac{80}{100}\cdot 1024 \\
& =80\cdot 102.4 \\
& =819.20
\end{align}$
For the seventh year:
$\begin{align}
& \text{LCD}=\frac{80}{100}\cdot 819.20 \\
& =80\cdot 8.1920 \\
& =655.36
\end{align}$
For the 8th year:
$\begin{align}
& \text{LCD}=\frac{80}{100}\cdot 655.36 \\
& =80\cdot 6.5536 \\
& =524.29
\end{align}$
For the 9th year:
$\begin{align}
& \text{LCD}=\frac{80}{100}\cdot 524.29 \\
& =80\cdot 5.2429 \\
& =419.43
\end{align}$
For the tenth year:
$\begin{align}
& \text{LCD}=\frac{80}{100}\cdot 419.43 \\
& =80\cdot 4.1943 \\
& =355.54
\end{align}$
Thus, the sequence for the resale value is: $\$2500,\$2000,\$1600,\$1280,\$1024,\$819.20,\$655.36,\$524.29,\$419.43,\$335.54$.