Answer
$\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+\frac{1}{10}\approx1.141667$
Work Step by Step
If we write out the sum, we get:
$\sum_{k=1}^5\frac{1}{2k}=\frac{1}{2(1)}+\frac{1}{2(2)}+\frac{1}{2(3)}+\frac{1}{2(4)}+\frac{1}{2(5)}=\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+\frac{1}{10}\approx1.141667$