Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 14 - Sequences, Series, and the Binomial Theorem - 14.1 Sequences and Series - 14.1 Exercise Set - Page 895: 62

Answer

$\sum\limits_{k=1}^{7}{{{\left( -1 \right)}^{k}}{{4}^{k+1}}}$ is $-52,432\text{ }\text{.}$

Work Step by Step

$\sum\limits_{k=1}^{7}{{{\left( -1 \right)}^{k}}{{4}^{k+1}}}$ For the sum of the notation, $\begin{align} & \sum\limits_{k=1}^{7}{{{\left( -1 \right)}^{k}}{{4}^{k+1}}}={{\left( -1 \right)}^{1}}{{\left( 4 \right)}^{1+1}}+{{\left( -1 \right)}^{2}}{{\left( 4 \right)}^{2+1}}+{{\left( -1 \right)}^{3}}{{\left( 4 \right)}^{3+1}}+{{\left( -1 \right)}^{4}}{{\left( 4 \right)}^{4+1}}+{{\left( -1 \right)}^{5}}{{\left( 4 \right)}^{5+1}}+{{\left( -1 \right)}^{6}}{{\left( 4 \right)}^{6+1}}+{{\left( -1 \right)}^{7}}{{\left( 4 \right)}^{7+1}} \\ & =-16+64-256+1,024-4,096+16,384-65,536 \\ & =-52,432 \end{align}$ Thus, the sum of the sigma notation $\sum\limits_{k=1}^{7}{{{\left( -1 \right)}^{k}}{{4}^{k+1}}}$ is $-52,432\text{ }\text{.}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.