Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 14 - Sequences, Series, and the Binomial Theorem - 14.1 Sequences and Series - 14.1 Exercise Set - Page 895: 83

Answer

$\frac{x-4}{4\left( x+2 \right)}$

Work Step by Step

$\frac{{{x}^{2}}-6x+8}{4x+12}\cdot \frac{x+3}{{{x}^{2}}-4}$ Simplify the expression as, $\begin{align} & \frac{{{x}^{2}}-6x+8}{4x+12}\cdot \frac{x+3}{{{x}^{2}}-{{2}^{2}}}=\frac{\left( x-2 \right)\left( x-4 \right)}{4\left( x+3 \right)}\cdot \frac{x+3}{\left( x+2 \right)\left( x-2 \right)} \\ & =\frac{\left( x-4 \right)}{4}\cdot \frac{1}{\left( x+2 \right)} \\ & =\frac{x-4}{4\left( x+2 \right)} \end{align}$ Thus, $\frac{{{x}^{2}}-6x+8}{4x+12}\cdot \frac{x+3}{{{x}^{2}}-4}=\frac{x-4}{4\left( x+2 \right)}$ Thus, $\frac{{{x}^{2}}-6x+8}{4x+12}\cdot \frac{x+3}{{{x}^{2}}-4}$ reduces to $\frac{x-4}{4\left( x+2 \right)}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.