Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 14 - Sequences, Series, and the Binomial Theorem - 14.1 Sequences and Series - 14.1 Exercise Set - Page 895: 61

Answer

$\sum\limits_{k=1}^{8}{{{\left( -1 \right)}^{k+1}}{{2}^{k}}}$ is $-170.$

Work Step by Step

$\sum\limits_{k=1}^{8}{{{\left( -1 \right)}^{k+1}}{{2}^{k}}}$ For the sum of the notation, $\begin{align} & \sum\limits_{k=1}^{8}{{{\left( -1 \right)}^{k+1}}{{2}^{k}}}={{\left( -1 \right)}^{1+1}}{{2}^{1}}+{{\left( -1 \right)}^{2+1}}{{2}^{2}}+{{\left( -1 \right)}^{3+1}}{{2}^{3}}+{{\left( -1 \right)}^{4+1}}{{2}^{4}}{{\left( -1 \right)}^{5+1}}{{2}^{5}}{{\left( -1 \right)}^{6+1}}{{2}^{6}}{{\left( -1 \right)}^{7+1}}{{2}^{7}}{{\left( -1 \right)}^{8+1}}{{2}^{8}} \\ & =2-4+8-16+32-64+128-256 \\ & =-170 \end{align}$ Thus, the sum of the sigma notation $\sum\limits_{k=1}^{8}{{{\left( -1 \right)}^{k+1}}{{2}^{k}}}$ is $-170.$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.