Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 14 - Sequences, Series, and the Binomial Theorem - 14.1 Sequences and Series - 14.1 Exercise Set - Page 895: 80

Answer

$\frac{x}{a}$

Work Step by Step

$\frac{x-{{a}^{-1}}}{a-{{x}^{-1}}}$ $\frac{x-{{a}^{-1}}}{a-{{x}^{-1}}}=\frac{x-\frac{1}{a}}{a-\frac{1}{x}}$ $\begin{align} & \frac{x-\frac{1}{a}}{a-\frac{1}{x}}=\frac{\left( x-\frac{1}{a} \right)ax}{\left( a-\frac{1}{x} \right)ax} \\ & =\frac{\frac{\left( ax-1 \right)ax}{a}}{\frac{\left( ax-1 \right)ax}{x}} \\ & =\frac{\frac{1}{a}}{\frac{1}{x}} \\ & =\frac{x}{a} \end{align}$ Thus, the simplified form of the expression $\frac{x-{{a}^{-1}}}{a-{{x}^{-1}}}$ is $\frac{x}{a}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.