Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 14 - Sequences, Series, and the Binomial Theorem - 14.1 Sequences and Series - 14.1 Exercise Set - Page 895: 81

Answer

$\frac{5a-3}{a\left( a+1 \right)\left( a-1 \right)}$

Work Step by Step

$\begin{align} & \frac{3}{{{a}^{2}}+a}+\frac{4}{2{{a}^{2}}-2}=\frac{3}{a\left( a+1 \right)}+\frac{4}{2\left( {{a}^{2}}-{{1}^{2}} \right)} \\ & =\frac{3}{a\left( a+1 \right)}+\frac{2}{\left( a-1 \right)\left( a+1 \right)} \\ & =\frac{1}{a+1}\left( \frac{3}{a}+\frac{2}{a-1} \right) \end{align}$ And, $\begin{align} & \frac{1}{a+1}\left( \frac{3}{a}+\frac{2}{a-1} \right)=\frac{1}{a+1}\left( \frac{3\times \left( a-1 \right)+2\times a}{a\left( a-1 \right)} \right) \\ & =\frac{3a-3+2a}{a\left( a-1 \right)\left( a+1 \right)} \\ & =\frac{5a-3}{a\left( a-1 \right)\left( a+1 \right)} \end{align}$ Thus, $\frac{3}{{{a}^{2}}+a}+\frac{4}{2{{a}^{2}}-2}=\frac{5a-3}{a\left( a+1 \right)\left( a-1 \right)}$ Thus, the simplified form of the expression $\frac{3}{{{a}^{2}}+a}+\frac{4}{2{{a}^{2}}-2}$ is $\frac{5a-3}{a\left( a+1 \right)\left( a-1 \right)}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.