Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 14 - Sequences, Series, and the Binomial Theorem - 14.1 Sequences and Series - 14.1 Exercise Set - Page 895: 59

Answer

$\sum\limits_{k=2}^{8}{\frac{k}{k-1}}\text{ }$is$\frac{1343}{140}.$

Work Step by Step

$\sum\limits_{k=2}^{8}{\frac{k}{k-1}}$ For the sum of the notation, $\begin{align} & \sum\limits_{k=2}^{8}{\frac{k}{k-1}}=\frac{2}{2-1}+\frac{3}{3-1}+\frac{4}{4-1}+\frac{5}{5-1}+\frac{6}{6-1}+\frac{7}{7-1}+\frac{8}{8-1} \\ & =2+\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+\frac{6}{5}+\frac{7}{6}+\frac{8}{7} \\ & =\frac{1343}{140} \end{align}$ Thus, the sum of the sigma notation $\sum\limits_{k=2}^{8}{\frac{k}{k-1}}$ is $\frac{1343}{140}.$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.