Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 14 - Sequences, Series, and the Binomial Theorem - 14.1 Sequences and Series - 14.1 Exercise Set - Page 895: 66

Answer

$\sum\limits_{k=3}^{7}{\frac{k}{{{2}^{k}}}}$ is $\frac{119}{128}\text{.}$

Work Step by Step

$\sum\limits_{k=3}^{7}{\frac{k}{{{2}^{k}}}}$ For the sum of the notation: $\sum\limits_{k=3}^{7}{\frac{k}{{{2}^{k}}}}=\frac{3}{{{2}^{3}}}+\frac{4}{{{2}^{4}}}+\frac{5}{{{2}^{5}}}+\frac{6}{{{2}^{6}}}+\frac{7}{{{2}^{7}}}=\frac{3}{8}+\frac{4}{16}+\frac{5}{32}+\frac{6}{64}+\frac{7}{128}$ And, $\begin{align} & \frac{3}{8}+\frac{4}{16}+\frac{5}{32}+\frac{6}{64}+\frac{7}{128}=\frac{16\cdot 3+8\cdot 4+4\cdot 5+2\cdot 6+1\cdot 7}{128} \\ & =\frac{48+32+20+12+7}{128} \\ & =\frac{119}{128} \end{align}$ Thus, the sum of the sigma notation$\sum\limits_{k=3}^{7}{\frac{k}{{{2}^{k}}}}$ is $\frac{119}{128}\text{.}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.