Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 14 - Sequences, Series, and the Binomial Theorem - 14.1 Sequences and Series - 14.1 Exercise Set - Page 895: 65

Answer

$\sum\limits_{k=3}^{5}{\frac{{{\left( -1 \right)}^{k}}}{k\left( k+1 \right)}}$ is $-\frac{1}{15}\text{.}$

Work Step by Step

$\sum\limits_{k=3}^{5}{\frac{{{\left( -1 \right)}^{k}}}{k\left( k+1 \right)}}$ For the sum of the notation, $\begin{align} & \sum\limits_{k=3}^{5}{\frac{{{\left( -1 \right)}^{k}}}{k\left( k+1 \right)}}=\frac{{{\left( -1 \right)}^{3}}}{3\left( 3+1 \right)}+\frac{{{\left( -1 \right)}^{4}}}{4\left( 4+1 \right)}+\frac{{{\left( -1 \right)}^{5}}}{5\left( 5+1 \right)} \\ & =-\frac{1}{12}+\frac{1}{20}-\frac{1}{30} \end{align}$ And, $\begin{align} & \frac{1}{20}-\frac{1}{12}-\frac{1}{30}=\frac{3-5-2}{60} \\ & =\frac{-4}{60} \\ & =-\frac{1}{15} \end{align}$ Thus, the sum of the sigma notation $\sum\limits_{k=3}^{5}{\frac{{{\left( -1 \right)}^{k}}}{k\left( k+1 \right)}}$ is $-\frac{1}{15}\text{.}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.