Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 14 - Sequences, Series, and the Binomial Theorem - 14.1 Sequences and Series - 14.1 Exercise Set - Page 895: 85

Answer

Thus, for the expression $\sum\limits_{k=1}^{n}{\left( {{a}_{k}}+{{b}_{k}} \right)}=\sum\limits_{k=1}^{n}{{{a}_{k}}}+\sum\limits_{k=1}^{n}{{{b}_{k}}}$, the commutative and associative laws of addition are used.

Work Step by Step

$\sum\limits_{k=1}^{n}{\left( {{a}_{k}}+{{b}_{k}} \right)}=\sum\limits_{k=1}^{n}{{{a}_{k}}}+\sum\limits_{k=1}^{n}{{{b}_{k}}}$ $\begin{align} & \sum\limits_{k=1}^{n}{\left( {{a}_{k}}+{{b}_{k}} \right)}=\left( {{a}_{1}}+{{b}_{1}} \right)+\left( {{a}_{1}}+{{b}_{1}} \right)+\left( {{a}_{1}}+{{b}_{1}} \right)+\ldots +\left( {{a}_{1}}+{{b}_{1}} \right) \\ & =\left( {{a}_{1}}+{{a}_{2}}+{{a}_{3}}+\ldots +{{a}_{n}} \right)+\left( {{b}_{1}}+{{b}_{2}}+{{b}_{3}}+\ldots +{{b}_{n}} \right) \end{align}$ Using the commutative and associative laws of addition, $\left( {{a}_{1}}+{{a}_{2}}+{{a}_{3}}+\ldots +{{a}_{n}} \right)+\left( {{b}_{1}}+{{b}_{2}}+{{b}_{3}}+\ldots +{{b}_{n}} \right)=\sum\limits_{k=1}^{n}{{{a}_{k}}}+\sum\limits_{k=1}^{n}{{{b}_{k}}}$ Obtain the left side of the expression, $\sum\limits_{k=1}^{n}{\left( {{a}_{k}}+{{b}_{k}} \right)}=\sum\limits_{k=1}^{n}{{{a}_{k}}}+\sum\limits_{k=1}^{n}{{{b}_{k}}}$ Thus, for the expression $\sum\limits_{k=1}^{n}{\left( {{a}_{k}}+{{b}_{k}} \right)}=\sum\limits_{k=1}^{n}{{{a}_{k}}}+\sum\limits_{k=1}^{n}{{{b}_{k}}}$, the commutative and associative laws of addition are used.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.