Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 14 - Sequences, Series, and the Binomial Theorem - 14.1 Sequences and Series - 14.1 Exercise Set - Page 895: 60

Answer

$\sum\limits_{k=2}^{5}{\frac{k-1}{k+1}}$ is $\frac{21}{10}.$

Work Step by Step

$\sum\limits_{k=2}^{5}{\frac{k-1}{k+1}}$ For the sum of the notation, $\begin{align} & \sum\limits_{k=2}^{5}{\frac{k-1}{k+1}}=\frac{2-1}{2+1}+\frac{3-1}{3+1}+\frac{4-1}{4+1}+\frac{5-1}{5+1} \\ & =\frac{1}{3}+\frac{2}{4}+\frac{3}{5}+\frac{4}{6} \\ & =\frac{1}{3}+\frac{1}{2}+\frac{3}{5}+\frac{2}{3} \end{align}$ And, $\begin{align} & \frac{1}{3}+\frac{1}{2}+\frac{3}{5}+\frac{2}{3}=\frac{10+15+18+20}{30} \\ & =\frac{63}{30} \\ & =\frac{21}{10} \end{align}$ Thus, the sum of the sigma notation $\sum\limits_{k=2}^{5}{\frac{k-1}{k+1}}$ is $\frac{21}{10}.$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.