Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 14 - Sequences, Series, and the Binomial Theorem - 14.1 Sequences and Series - 14.1 Exercise Set - Page 895: 84

Answer

$\frac{3\left( y+1 \right)\left( y-1 \right)}{y}$

Work Step by Step

$\frac{{{y}^{3}}-y}{3y+1}\div \frac{{{y}^{2}}}{9y+3}$ Simplify the expression as, $\begin{align} & \frac{{{y}^{3}}-y}{3y+1}\div \frac{{{y}^{2}}}{9y+3}=\frac{y\left( {{y}^{2}}-{{1}^{2}} \right)}{3y+1}\cdot \frac{3\left( 3y+1 \right)}{{{y}^{2}}} \\ & =y\left( y-1 \right)\left( y+1 \right)\cdot \frac{3}{{{y}^{2}}} \\ & =\frac{3\left( y+1 \right)\left( y-1 \right)}{y} \end{align}$ Thus, $\frac{{{y}^{3}}-y}{3y+1}\div \frac{{{y}^{2}}}{9y+3}=\frac{3\left( y+1 \right)\left( y-1 \right)}{y}$ Thus, $\frac{{{y}^{3}}-y}{3y+1}\div \frac{{{y}^{2}}}{9y+3}$ reduces to $\frac{3\left( y+1 \right)\left( y-1 \right)}{y}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.