Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 12 - Exponential Functions and Logarithmic Functions - Review Exercises: Chapter 12 - Page 843: 30

Answer

The equivalent expression for $\log \sqrt[4]{\frac{{{z}^{2}}}{{{x}^{3}}y}}$is $\frac{1}{4}\left( 2\log z-3\log x-\log y \right)$.

Work Step by Step

$\log \sqrt[4]{\frac{{{z}^{2}}}{{{x}^{3}}y}}$ Evaluate the expression in terms of a sum as follows. $\log \sqrt[4]{\frac{{{z}^{2}}}{{{x}^{3}}y}}=\log {{\left( \frac{{{z}^{2}}}{{{x}^{3}}y} \right)}^{\frac{1}{4}}}$ Apply the power rule for logarithms as follows. $\log \sqrt[4]{\frac{{{z}^{2}}}{{{x}^{3}}y}}=\frac{1}{4}\log \frac{{{z}^{2}}}{{{x}^{3}}y}$ Apply the quotient rule for logarithms as follows. $\begin{align} & \log \sqrt[4]{\frac{{{z}^{2}}}{{{x}^{3}}y}}=\frac{1}{4}\left( \log {{z}^{2}}-\log {{x}^{3}}y \right) \\ & =\frac{1}{4}\left( \log {{z}^{2}}-\left( \log {{x}^{3}}+\log y \right) \right) \end{align}$ Again, apply power rule and simplify, $\log \sqrt[4]{\frac{{{z}^{2}}}{{{x}^{3}}y}}=\frac{1}{4}\left( 2\log z-3\log x-\log y \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.