Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 12 - Exponential Functions and Logarithmic Functions - Review Exercises: Chapter 12 - Page 843: 29

Answer

The equivalent expression for ${{\log }_{a}}\frac{{{x}^{5}}}{y{{z}^{2}}}$ is $5{{\log }_{a}}x-{{\log }_{a}}y-2{{\log }_{a}}z$.

Work Step by Step

${{\log }_{a}}\frac{{{x}^{5}}}{y{{z}^{2}}}$ Apply the quotient rule for logarithms as follows. $\begin{align} & {{\log }_{a}}\frac{{{x}^{5}}}{y{{z}^{2}}}={{\log }_{a}}{{x}^{5}}-{{\log }_{a}}y{{z}^{2}} \\ & ={{\log }_{a}}{{x}^{5}}-{{\log }_{a}}y-{{\log }_{a}}{{z}^{2}} \\ & ={{\log }_{a}}{{x}^{5}}-\left( {{\log }_{a}}y+{{\log }_{a}}{{z}^{2}} \right) \end{align}$ Apply the power rule for logarithm as follows. ${{\log }_{a}}\frac{{{x}^{5}}}{y{{z}^{2}}}=5{{\log }_{a}}x-{{\log }_{a}}y-2{{\log }_{a}}z$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.