Answer
The graph is shown below.
Work Step by Step
$y={{3}^{x}}+1$
Substitute $x=0,1,2,-1,-2$ in the function $y={{3}^{x}}+1$ and tabulate the values as shown in Table 1.
$\begin{align}
& y={{3}^{0}}+1 \\
& =1+1 \\
& =2
\end{align}$
$\begin{align}
& y={{3}^{1}}+1 \\
& =3+1 \\
& =4
\end{align}$
$\begin{align}
& y={{3}^{2}}+1 \\
& =9+1 \\
& =10
\end{align}$
$\begin{align}
& y={{3}^{-1}}+1 \\
& =\frac{1}{3}+1 \\
& =\frac{4}{3}
\end{align}$
$\begin{align}
& y={{3}^{-2}}+1 \\
& =\frac{1}{{{3}^{2}}}+1 \\
& =\frac{1}{9}+1 \\
& =\frac{10}{9}
\end{align}$
Tabulate the computed values as shown below.
$\begin{matrix}
x & y={{3}^{x}}+1 \\
0 & 2 \\
1 & 4 \\
2 & 10 \\
-1 & \frac{4}{3} \\
-2 & \frac{10}{9} \\
\end{matrix}$
Plot these points and connect them with a smooth curve as shown below in the figure.