Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 1-12 - Cumulative Review - Page 846: 9

Answer

$\frac{3}{4}$.

Work Step by Step

$\sqrt{4-5x}=2x-1$ …… (1) Take the square of both sides. $4-5x={{\left( 2x-1 \right)}^{2}}$ Apply the formula for the square of difference of any two numbers and simplify the equation. $\begin{align} & 4-5x=4{{x}^{2}}-4x+1 \\ & 4{{x}^{2}}+x-3=0 \\ & 4x\left( x+1 \right)-3\left( x+1 \right)=0 \\ & \left( 4x-3 \right)\left( x+1 \right)=0 \end{align}$ The solution is, $\begin{align} & 4x-3=0 \\ & x=\frac{3}{4} \end{align}$ Or, $\begin{align} & x+1=0 \\ & x=-1 \end{align}$ Check: Substitute $x=\frac{3}{4}$ in equation (1). $\begin{matrix} \sqrt{4-5\left( \frac{3}{4} \right)}\overset{?}{\mathop{=}}\,2\left( \frac{3}{4} \right)-1 \\ \sqrt{\frac{1}{4}}\overset{?}{\mathop{=}}\,\frac{3}{2}-1 \\ \frac{1}{2}=\frac{1}{2} \\ \end{matrix}$ It is true. Substitute $x=-1$ in equation (1). $\begin{matrix} \sqrt{4-5\left( -1 \right)}\overset{?}{\mathop{=}}\,2\left( -1 \right)-1 \\ \sqrt{9}\overset{?}{\mathop{=}}\,-3 \\ 3=-3 \\ \end{matrix}$ It is false.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.