Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 1-12 - Cumulative Review - Page 846: 14

Answer

True. The value of x in the function $\ln x-\ln \left( x-8 \right)=1$ is $12.6558$.

Work Step by Step

Consider the given expression. $\ln x-\ln \left( x-8 \right)=1$ …… (1) Apply quotient rule for logarithms: $\begin{align} & \ln \frac{x}{x-8}=1 \\ & {{\log }_{e}}\left( \frac{x}{x-8} \right)=1 \\ \end{align}$ If any logarithm is in the form of ${{\log }_{b}}M=x$ , then it is equivalent to the $M={{b}^{x}}$ Write the equivalent form of the logarithm. $\begin{align} & \frac{x}{x-8}={{e}^{1}} \\ & =2.7183 \end{align}$ Upon further simplification: $\begin{align} & x=2.7183x-21.7464 \\ & 1.7183x=21.7464 \\ & x=\frac{21.7464}{1.7183} \\ & =12.6558 \end{align}$ Check: Substitute $12.6558$ for $x$ in equation (1). $\begin{align} \ln \left( 12.6558 \right)-\ln \left( 12.6558-8 \right)\overset{?}{\mathop{=}}\,1 & \\ \ln \left( 12.6558 \right)-\ln \left( 4.6558 \right)\overset{?}{\mathop{=}}\,1 & \\ \ln \left( 12.6558 \right)-\ln \left( 4.6558 \right)\overset{?}{\mathop{=}}\,1 & \\ 2.5381-1.5381\overset{?}{\mathop{=}}\,1 & \\ 1\overset{?}{\mathop{=}}\,1 & \\ \end{align}$ Thus, it is true.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.