Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 1-12 - Cumulative Review - Page 846: 10

Answer

True. The values of x in the equation $3{{x}^{2}}+48=0$ are $\pm 4i$.

Work Step by Step

Consider the equation. $3{{x}^{2}}+48=0$ …… (1) Subtract $48$ on both sides. $\begin{align} & 3{{x}^{2}}+48-48=0-48 \\ & 3{{x}^{2}}=-48 \\ & {{x}^{2}}=-\frac{48}{3} \\ & {{x}^{2}}=-16 \end{align}$ Apply the square root property. $\begin{align} & x=\sqrt{-16} \\ & =\pm \sqrt{-1}\cdot \sqrt{16} \end{align}$ Substitute $\sqrt{-1}=i$. $\begin{align} & x=i\sqrt{16} \\ & =\pm 4i \end{align}$ Check, Substitute $\pm 4i$ in equation (1). $\begin{align} 3{{\left( \pm 4i \right)}^{2}}+48\overset{?}{\mathop{=}}\,0 & \\ 3{{\left( \pm 4 \right)}^{2}}{{\left( i \right)}^{2}}+48\overset{?}{\mathop{=}}\,0 & \\ 3\left( 16 \right)\left( -1 \right)+48\overset{?}{\mathop{=}}\,0 & \\ -48+48\overset{?}{\mathop{=}}\,0 & \\ \end{align}$ Solve further, $\begin{align} -48+48\overset{?}{\mathop{=}}\,0 & \\ 0=0 & \\ \end{align}$ It is true.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.