Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 1-12 - Cumulative Review - Page 846: 5

Answer

It is true. The required solution set is $\left\{ 3,-1 \right\}$.

Work Step by Step

Consider the equations. $\begin{align} & 4x-3y=15 \\ & 3x+5y=4 \\ \end{align}$ $4x-3y=15$ …… (1) $3x+5y=4$ …… (2) Solve equation (2) for x. $\begin{align} & 3x+5y=4 \\ & 3x=4-5y \\ & x=\frac{4-5y}{3} \end{align}$ Substitute $x=\frac{4-5y}{3}$ in equation (1) and solve for y. $\begin{align} & 4\left( \frac{4-5y}{3} \right)-3y=15 \\ & 16-20y-9y=45 \\ & 16-45=29y \\ & 29=29y \end{align}$ Simplify further as follows. $\begin{align} & y=-\frac{29}{29} \\ & y=-1 \end{align}$ Substitute $y=-1$ in $x=\frac{4-5y}{3}$ and solve for x. $\begin{align} & x=\frac{4-5\left( -1 \right)}{3} \\ & =\frac{4+5}{3} \\ & =\frac{9}{3} \\ & =3 \end{align}$ Thus, $x=3,y=-1$. Check: Substitute $x=3,y=-1$ in equation (1). $\begin{align} 4\left( 3 \right)-3\left( -1 \right)\overset{?}{\mathop{=}}\,15 & \\ 12+3\overset{?}{\mathop{=}}\,15 & \\ 15\overset{?}{\mathop{=}}\,15 & \\ \end{align}$ It is true.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.