Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 1-12 - Cumulative Review - Page 846: 7

Answer

True. The values of x are $10\text{ and }-7$.

Work Step by Step

Consider the equation. $x\left( x-3 \right)=70$ Apply the distributive property. ${{x}^{2}}-3x=70$ Apply the addition principle: $\begin{align} & {{x}^{2}}-3x-70=70-70 \\ & {{x}^{2}}-3x-70=0 \\ \end{align}$ Factor: $\begin{align} & {{x}^{2}}-10x+7x-70=0 \\ & x\left( x-10 \right)+7\left( x-10 \right)=0 \\ & \left( x-10 \right)\left( x+7 \right)=0 \end{align}$ Apply the principle of zero products. $\begin{align} & x-10=0\text{ or }x+7=0 \\ & x=10\text{ or }x=-7 \end{align}$ Therefore, the values of x are 10 and $-7$ respectively. Check: Substitute 10 for $x$ in the given equation $x\left( x-3 \right)=70$. $\begin{align} 10\left( 10-3 \right)\overset{?}{\mathop{=}}\,70 & \\ 10\left( 7 \right)\overset{?}{\mathop{=}}\,70 & \\ 70=70 & \\ \end{align}$ Substitute $-7$ for $x$ in the given equation $x\left( x-3 \right)=70$. $\begin{align} -7\left( -7-3 \right)\overset{?}{\mathop{=}}\,70 & \\ -7\left( -10 \right)\overset{?}{\mathop{=}}\,70 & \\ 70=70 & \\ \end{align}$ It is also true.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.