Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 1-12 - Cumulative Review - Page 846: 16

Answer

The solution set is $\left\{ -3+2\sqrt{5},-3-2\sqrt{5} \right\}$.

Work Step by Step

Consider the function. $f\left( x \right)={{x}^{2}}+6x$ Substitute $x=a $ in $f\left( x \right)={{x}^{2}}+6x$. Then, $f\left( a \right)={{a}^{2}}+6a$ …… (1) Given that $f\left( a \right)=11$. Substitute $f\left( a \right)=11$ in equation (1). $11={{a}^{2}}+6a$ …… (2) Subtract $11$ on both sides. $\begin{align} & {{a}^{2}}+6a-11=11-11 \\ & {{a}^{2}}+6a-11=0 \\ \end{align}$ The equation ${{a}^{2}}+6a-11=0$ is in quadratic equation form. Compare the equation ${{a}^{2}}+6a-11=0$ with the general form of the quadratic equation $a{{x}^{2}}+bx+c=0$. Then, $a=1,b=6$and $c=-11$. Substitute these corresponding values in the quadratic formula $x=\frac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$. $\begin{align} & a=\frac{-6\pm \sqrt{{{6}^{2}}-4\left( 1 \right)\left( -11 \right)}}{2\left( 1 \right)} \\ & =\frac{-6\pm \sqrt{36+44}}{2} \\ & =\frac{-6\pm \sqrt{80}}{2} \end{align}$ Simplify further as: $\begin{align} & a=\frac{-6\pm 4\sqrt{5}}{2} \\ & =-3\pm 2\sqrt{5} \end{align}$ Thus, the solution set for a is $\left\{ -3+2\sqrt{5},-3-2\sqrt{5} \right\}$. Check: Substitute $-3+2\sqrt{5}$ for $a$ in equation (2). $\begin{align} & 11\overset{?}{\mathop{=}}\,{{\left( -3+2\sqrt{5} \right)}^{2}}+6\left( -3+2\sqrt{5} \right) \\ & 11\overset{?}{\mathop{=}}\,9+20-12\sqrt{5}-18+12\sqrt{5} \\ & 11\overset{?}{\mathop{=}}\,9+20-18 \\ & 11\overset{?}{\mathop{=}}\,11 \\ \end{align}$ It is true. Substitute $-3-2\sqrt{5}$ for $a$ in equation (2). $\begin{align} & 11\overset{?}{\mathop{=}}\,{{\left( -3-2\sqrt{5} \right)}^{2}}+6\left( -3-2\sqrt{5} \right) \\ & 11\overset{?}{\mathop{=}}\,9+20+12\sqrt{5}-18-12\sqrt{5} \\ & 11\overset{?}{\mathop{=}}\,9+20-18 \\ & 11\overset{?}{\mathop{=}}\,11 \\ \end{align}$ It is also true.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.