Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 1-12 - Cumulative Review - Page 846: 25

Answer

$\left( {{x}^{2}}+4{{y}^{2}} \right)\left( x+2y \right)\left( x-2y \right)$.

Work Step by Step

Consider the expression. ${{x}^{4}}-16{{y}^{4}}$ The given expression can be written as: ${{x}^{4}}-16{{y}^{4}}={{\left( {{x}^{2}} \right)}^{2}}-{{\left( 4{{y}^{2}} \right)}^{2}}$ Apply the formula of difference of squares, $\begin{align} & {{x}^{4}}-16{{y}^{4}}=\left( {{x}^{2}}+4{{y}^{2}} \right)\left( {{x}^{2}}-4{{y}^{2}} \right) \\ & =\left( {{x}^{2}}+4{{y}^{2}} \right)\left( {{x}^{2}}-{{\left( 2y \right)}^{2}} \right) \end{align}$ Again, apply the formula of difference of squares in the term $\left( {{x}^{2}}-{{\left( 2y \right)}^{2}} \right)$, ${{x}^{4}}-16{{y}^{4}}=\left( {{x}^{2}}+4{{y}^{2}} \right)\left( x+2y \right)\left( x-2y \right)$ Check, Apply the FOIL method. $\begin{align} & \left( {{x}^{2}}+4{{y}^{2}} \right)\left( x+2y \right)\left( x-2y \right)=\left( {{x}^{2}}+4{{y}^{2}} \right)\left( x\cdot x-x\cdot 2y+2y\cdot x-2y\cdot 2y \right) \\ & =\left( {{x}^{2}}+4{{y}^{2}} \right)\left( {{x}^{2}}-2xy+2yx-4{{y}^{2}} \right) \\ & =\left( {{x}^{2}}+4{{y}^{2}} \right)\left( {{x}^{2}}-4{{y}^{2}} \right) \end{align}$ Again, apply the FOIL method. $\begin{align} & \left( {{x}^{2}}+4{{y}^{2}} \right)\left( x+2y \right)\left( x-2y \right)=\left( {{x}^{2}}+4{{y}^{2}} \right)\left( {{x}^{2}}-4{{y}^{2}} \right) \\ & =\left( {{x}^{2}}\cdot {{x}^{2}}-{{x}^{2}}\cdot 4{{y}^{2}}+4{{y}^{2}}\cdot {{x}^{2}}-4{{y}^{2}}\cdot 4{{y}^{2}} \right) \\ & =\left( {{x}^{4}}-4{{x}^{2}}{{y}^{2}}+4{{x}^{2}}{{y}^{2}}-16{{y}^{4}} \right) \\ & ={{x}^{4}}-16{{y}^{4}} \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.