Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 1-12 - Cumulative Review - Page 846: 23

Answer

$2\left( x+2y \right)\left( 3x-2y \right)$.

Work Step by Step

Consider the expression. $6{{x}^{2}}+8xy-8{{y}^{2}}$ Take out the greatest common factor, 2. $6{{x}^{2}}+8xy-8{{y}^{2}}=2\left( 3{{x}^{2}}+4xy-4{{y}^{2}} \right)$ Factor the expression, $3{{x}^{2}}+4xy-4{{y}^{2}}$. $\begin{align} & 6{{x}^{2}}+8xy-8{{y}^{2}}=2\left( 3{{x}^{2}}+6xy-2xy-4{{y}^{2}} \right) \\ & =2\left( 3x\left( x+2y \right)-2y\left( x+2y \right) \right) \\ & =2\left( x+2y \right)\left( 3x-2y \right) \end{align}$ Check: $\begin{align} & 2\left( x+2y \right)\left( 3x-2y \right)=2\left( x\cdot 3x-x\cdot 2y+2y\cdot 3x-2y\cdot 2y \right) \\ & =2\left( 3{{x}^{2}}-2xy+6xy-4{{y}^{2}} \right) \\ & =2\left( 3{{x}^{2}}+4xy-4{{y}^{2}} \right) \\ & =6{{x}^{2}}+8xy-8{{y}^{2}} \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.