Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 1-12 - Cumulative Review - Page 846: 21

Answer

The simplified form of $\left( 2-i\sqrt{3} \right)\left( 6+i\sqrt{3} \right)$ is $15-4i\sqrt{3}$.

Work Step by Step

Consider the expression. $\left( 2-i\sqrt{3} \right)\left( 6+i\sqrt{3} \right)$ Apply the FOIL method. $\begin{align} & \left( 2-i\sqrt{3} \right)\left( 6+i\sqrt{3} \right)=2\cdot 6+2\cdot i\sqrt{3}-i\sqrt{3}\cdot 6-i\sqrt{3}\cdot i\sqrt{3} \\ & =12+-i4\sqrt{3}-{{i}^{2}}{{\left( \sqrt{3} \right)}^{2}} \end{align}$ Apply the radical rule, and substitute ${{i}^{2}}=-1$ . $\begin{align} & \left( 2-i\sqrt{3} \right)\left( 6+i\sqrt{3} \right)=12-i4\sqrt{3}-\left( -1 \right)3 \\ & =12-i4\sqrt{3}+3 \\ & =15-4i\sqrt{3} \end{align}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.