Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 1-12 - Cumulative Review - Page 846: 13

Answer

True. The equation is ${{3}^{5x}}=7$.

Work Step by Step

Consider the equation. ${{3}^{5x}}=7$ Write the equivalent form of the expression. If any expression is in the form of $M={{b}^{p}}$ , then it is equivalent to the ${{\log }_{b}}M=p$. Here, $b=3,M=7,p=5x$ . $\begin{align} & {{3}^{5x}}=7 \\ & 5x={{\log }_{3}}7 \\ \end{align}$ Apply change of base rule. $\begin{align} & 5x=\frac{\log 7}{\log 3} \\ & x=\frac{1}{5}\left( \frac{\log 7}{\log 3} \right) \\ \end{align}$ The value of $x=\frac{1}{5}\left( \frac{\log 7}{\log 3} \right)$ can be calculated by using of using Ti-84 and is below: Step1: Press ON key. Step2: Press LOG key. Step3: Enter the value 7. Step4: Press “)” key. Step5: Press “$\div $” key. Step6: Press LOG key. Step7: Enter the value 3. Step8: Press “)” key. Step9: Press “(” key. Step10: Enter the value 1. Step11: Press “$\div $” key. Step12: Enter the value 5. Step13: Press “)” key. Step14: Press ENTER key. The result obtained is $0.3542487498$. Therefore, the value of x is $0.3542$. Check, Substitute $0.3542$ for x in the given expression ${{3}^{5x}}=7$. ${{3}^{5\left( 0.3542 \right)}}\overset{?}{\mathop{=}}\,7$ The value of ${{3}^{5\left( 0.3542 \right)}}$ can be calculated by using of using Ti-84 and is below: Step1: Press ON key. Step2: Enter the value 3. Step3: Press “^” key. Step4: Press “(” key. Step5: Enter the value $5$. Step6: Press “)” key. Step7: Enter the value $0.3542$. Step8: Press ENTER key. The result obtained is $6.99812575\approx 7$. Thus, ${{3}^{5\left( 0.3542 \right)}}\overset{?}{\mathop{=}}\,7$. It is true.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.