Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 1-12 - Cumulative Review - Page 846: 11

Answer

The values of x in the equation ${{x}^{4}}-13{{x}^{2}}+36=0$ are –2, –3, 2 and 3.

Work Step by Step

Consider the equation. ${{x}^{4}}-13{{x}^{2}}+36=0$ …… (1) The value of x in the equation ${{x}^{4}}-13{{x}^{2}}+36=0$ is calculated as follows. Consider $u={{x}^{2}}$; then ${{u}^{2}}={{x}^{4}}$. Substitute u for ${{x}^{2}}$ in the equation (1). $\begin{align} & {{x}^{4}}-13{{x}^{2}}+36=0 \\ & {{u}^{2}}-13u+36=0 \\ & {{u}^{2}}-4u-9u+36=0 \\ & u\left( u-4 \right)-9\left( u-4 \right)=0 \end{align}$ Simplify further as follows. $\left( u-4 \right)\left( u-9 \right)=0$ $\begin{align} & u-4=0 \\ & u=4 \end{align}$ Or, $\begin{align} & u-9=0 \\ & u=9 \end{align}$ Substitute $u={{x}^{2}}$ and apply the square root property. $\begin{align} & {{x}^{2}}=4 \\ & x=\sqrt{4} \\ & x=\pm 2 \\ \end{align}$ Or, $\begin{align} & {{x}^{2}}=9 \\ & x=\sqrt{9} \\ & x=\pm 3 \\ \end{align}$ Therefore, the values of x in the equation ${{x}^{4}}-13{{x}^{2}}+36=0$ are $-2,2,3\text{ and}-3$. Check, Substitute $\pm 2$ for $x$ in equation (1). $\begin{align} {{\left( \pm 2 \right)}^{4}}-13{{\left( \pm 2 \right)}^{2}}+36\overset{?}{\mathop{=}}\,0 & \\ 16-52+36\overset{?}{\mathop{=}}\,0 & \\ 52-52\overset{?}{\mathop{=}}\,0 & \\ 0=0 & \\ \end{align}$ It is true. Substitute $\pm 3$ for $x$ in equation (1). $\begin{align} {{\left( \pm 3 \right)}^{4}}-13{{\left( \pm 3 \right)}^{2}}+36\overset{?}{\mathop{=}}\,0 & \\ 81-117+36\overset{?}{\mathop{=}}\,0 & \\ 117-117\overset{?}{\mathop{=}}\,0 & \\ 0=0 & \\ \end{align}$ It is also true. Thus, the values of x are $-2,2, 3 $ and $-3$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.