Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 1-12 - Cumulative Review - Page 846: 22

Answer

True. The required factor of $27+64{{n}^{3}}$ is $\left( 3+4n \right)\left( 9-12n+16{{n}^{2}} \right)$ .

Work Step by Step

Consider the expression. $27+64{{n}^{3}}$ The given expression can be written as ${{\left( 3 \right)}^{3}}+{{\left( 4n \right)}^{3}}$. Apply the formula of sum of cubes, $\begin{align} & 27+64{{n}^{3}}=\left( 3+4n \right)\left( {{3}^{2}}-3\cdot 4n+{{4}^{2}}{{n}^{2}} \right) \\ & =\left( 3+4n \right)\left( 9-12n+16{{n}^{2}} \right) \end{align}$ Check: $\begin{align} & \left( 3+4n \right)\left( 9-12n+16{{n}^{2}} \right)=3\cdot 9-3\cdot 12n+3\cdot 16{{n}^{2}}+4n\cdot 9-4n\cdot 12n+4n\cdot 16{{n}^{2}} \\ & =27-36n+48{{n}^{2}}+36n-48{{n}^{2}}+64{{n}^{3}} \\ & =27-64{{n}^{3}} \end{align}$ Thus, it is true.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.