Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 1-12 - Cumulative Review - Page 846: 6

Answer

All three equations are true. The solution of the provided equations is $x=1$, $y=-2$, and $z=0$.

Work Step by Step

The equations are already in standard form with no fractions or decimals. $x+y-3z=-1$ …… (1) $2x-y+z=4$ …… (2) $-x-y+z=1$ …… (3) Eliminate the variable $y$: Add equation (1) and (2) and simplify as follows, $\begin{align} & x+y-3z=-1 \\ & \underline{2x-y-z=4} \\ & 3x-4z =3 \\ \end{align}$ Now, add equation (1) and (3) and simplify as follows, $\begin{align} & x+y-3z=-1 \\ & \underline{-x-y+z=1} \\ & -2z=0 \\ \end{align}$ And, $z=0$ To find the value of $x$, substitute the value of $z=0$ in the equation $3x-2z=3$ and simplify the equation, $\begin{align} & 3x-2z=3 \\ & 3x-2\cdot \left( 0 \right)=3 \\ & 3x=3 \\ & x=1 \end{align}$ Put the value of $x=1$ and $z=0$ in equation (3) $\begin{align} & -x-y+z=1 \\ & -1-y+0=1 \\ & -y=1+1 \\ & y=-2 \end{align}$ Hence, the solution of the provided equation is $x=1$, $y=-2$ and $z=0$. Now, check the solution of the equation. Substitute the value of $x,y$ and $z$ in equation (1) $\begin{align} & x+y-3z=-1 \\ & 1+\left( -2 \right)-3\left( 0 \right)\overset{?}{\mathop{=}}\,-1 \\ & 1-2-0\overset{?}{\mathop{=}}\,-1 \\ & -1\overset{?}{\mathop{=}}\,-1 \\ \end{align}$ Since, $-1=-1$ it is true. Substitute the values of $x,y$ and $z$ in equation (2) $\begin{align} & 2x-y+z=4 \\ & 2\left( 1 \right)-\left( -2 \right)+0\overset{?}{\mathop{=}}\,4 \\ & 2+2+0\overset{?}{\mathop{=}}\,4 \\ & 4\overset{?}{\mathop{=}}\,4 \\ \end{align}$ So, $4=4$ it is true Substitute the value of $x,y$ and $z$ in equation (3) $\begin{align} & -x-y+z=1 \\ & -1-\left( -2 \right)+0=1 \\ & -1+2+0=1 \\ & 1=1 \end{align}$ Here, $1=1$ it is true. The triple makes all three equations true, so it is a solution.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.