Big Ideas Math - Algebra 1, A Common Core Curriculum

Published by Big Ideas Learning LLC
ISBN 10: 978-1-60840-838-2
ISBN 13: 978-1-60840-838-2

Chapter 10 - Radical Functions and Equations - 10.3 - Solving Radical Equations - Exercises - Page 564: 33

Answer

The solution is $c=\frac{1}{2}$.

Work Step by Step

The given equation is $\Rightarrow \sqrt{2c+1}-\sqrt{4c}=0$ Add $\sqrt{4c}$ to each side. $\Rightarrow \sqrt{2c+1}-\sqrt{4c}+\sqrt{4c}=0+\sqrt{4c}$ Simplify. $\Rightarrow \sqrt{2c+1}=\sqrt{4c}$ Square each side of the equation. $\Rightarrow (\sqrt{2c+1})^2=(\sqrt{4c})^2$ Simplify. $\Rightarrow 2c+1=4c$ Subtract $2c$ from each side. $\Rightarrow 2c+1-2c=4c-2c$ Simplify. $\Rightarrow 1=2c$ Divide each side by $2$. $\Rightarrow \frac{1}{2}=c$ Check $c=\frac{1}{2}$. $\Rightarrow \sqrt{2c+1}-\sqrt{4c}=0$ $\Rightarrow \sqrt{2(\frac{1}{2})+1}-\sqrt{4(\frac{1}{2})}=0$ $\Rightarrow \sqrt{1+1}-\sqrt{2}=0$ $\Rightarrow \sqrt{2}-\sqrt{2}=0$ $\Rightarrow 0=0$ True. Hence, the solution is $c=\frac{1}{2}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.