Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 38 - Photons and Matter Waves - Problems - Page 1185: 86

Answer

The time-dependent wave function $\Psi(x, t)$ is given by $\Psi(x, t)=\psi(x)e^{-i\omega t}$, where $\psi(x)=Ae^{ikx}+Be^{-ikx}$ Now, $|\psi(x)|^2=\psi(x)\psi^*(x)$ or, $|\psi(x)|^2= \psi(x)e^{-i\omega t}\psi^*(x)e^{i\omega t}$ or, $|\psi(x)|^2=\Psi(x, t)\Psi^*(x, t)$ or, $|\psi(x)|^2=|\Psi(x, t)|^2$

Work Step by Step

The time-dependent wave function $\Psi(x, t)$ is given by $\Psi(x, t)=\psi(x)e^{-i\omega t}$, where $\psi(x)=Ae^{ikx}+Be^{-ikx}$ Now, $|\psi(x)|^2=\psi(x)\psi^*(x)$ or, $|\psi(x)|^2= \psi(x)e^{-i\omega t}\psi^*(x)e^{i\omega t}$ or, $|\psi(x)|^2=\Psi(x, t)\Psi^*(x, t)$ or, $|\psi(x)|^2=|\Psi(x, t)|^2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.