Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 38 - Photons and Matter Waves - Problems - Page 1185: 78

Answer

$1.7883\;mA$

Work Step by Step

The probability that an electron of mass $m$ and energy $E$ will tunnel through a barrier of height $U$ and thickness $L$ is given by the transmission coefficient $T$ $T\approx e^{-2bL}$, ..............................$(1)$ where $b=\sqrt {\frac{8\pi^2m(U-E)}{h^2}}$ ..............................$(2)$ The speed of each electron is $v=1.2\times 10^{3}\;m/s$. Therefore, the energy of each electron is given by $E=\frac{1}{2}m_ev^2$ or, $E=\frac{1}{2}\times9.1\times 10^{-31}\times(1.2\times 10^{3})^2\;J$ or, $E=6.552\times 10^{-25}\;J$ or, $E=4.095\times 10^{-6}\;eV$ The beam of electrons encounters a potential barrier of height $-4.719\;\mu V$ and thickness $200.0\;nm$. Therefore, $U=4.719\times 10^{-6}\;eV$ and $L=200\;nm$ Substituting the above values in equation $2$, we get $b=\sqrt {\frac{8\times\pi^2\times 9.1\times 10^{-31}\times(4.719-4.095)\times 10^{-6}\times1.6\times 10^{-19}}{(6.63\times 10^{-34})^2}}\;m^{-1}$ or, $b\approx 4.04\times 10^{6}$ $m^{-1}$ The (dimensionless) quantity $2bL$ is then $2bL=2\times (4.04\times 10^{6})\times (200\times 10^{-9})=1.616$ and, from the equation $1$, the transmission coefficient is $T\approx e^{-2bL}= e^{-1.616}\approx 0.1987$ Incident beam current is, $I_0=9\;mA$. Therefore, the transmitted current is given by $I_T=TI_0$ $\implies I_T=0.1987\times9\;mA$ $\implies I_T=1.7883\;mA$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.