Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 38 - Photons and Matter Waves - Problems - Page 1185: 76a

Answer

$8.33\times 10^{103}$ $years$

Work Step by Step

The number of protons striking the potential energy barrier per second is $n=\frac{I}{q}$ ........................$(1)$, where $q$ is the charge of proton. Substituting the given value $I=1000$ $A$ in eq. $(1)$, we get $n=\frac{1000}{1.6\times 10^{-19}}$ $s^{-1}$ or, $n=6.25\times 10^{21}$ $s^{-1}$ Let, $N_{I}$ number of protons strikes the potential barrier in time $t$. Thus, $N_{I}=nt$ ........................$(2)$ If $T$ be the transmission coefficient, then the number of protons transmitted is given by $N_{T}=TN_{I}$ Substituting eq. $(2)$, we get $N_{T}=Tnt$ ........................$(3)$ If we consider that $t_{1}$ is the waiting time for which the one proton will be transmitted. Now eq. $(3)$ becomes $1=Tnt_{1}$ or, $t_{1}=\frac{1}{nT}$ ........................$(4)$ Now, the probability that a proton of mass $m$ and energy $E$ will tunnel through a barrier of height $U_{b}$ and thickness $L$ is given by the transmission coefficient $T$ $T\approx e^{-2bL}$, ..............................$(5)$ where $b=\sqrt {\frac{8\pi^2m(U_{b}-E)}{h^2}}$ ..............................$(6)$ Given, $E=5.0$ $eV$, $U_{b}=6.0$ $eV$$L=0.70$ $nm$ $=7\times 10^{-10}$ $m$ Substituting the above values in equation $6$, we get $b=\sqrt {\frac{8\times\pi^2\times 1.67\times 10^{-27}\times(6-5)\times1.6\times 10^{-19}}{(6.63\times 10^{-34})^2}}$ or, $b\approx 2.191\times 10^{11}$ $m^{-1}$ The (dimensionless) quantity $2bL$ is then $2bL=2\times (2.191\times 10^{11})\times (7\times 10^{-10})\approx 306.74$ and, from the equation $1$, the transmission coefficient is $T\approx e^{-2bL}= e^{-306.74}=6.0885\times 10^{-134}$ Thus, from eq. $(4)$, we get $t_{1}=\frac{1}{6.25\times 10^{21}\times6.0885\times 10^{-134}}$ $s$ or,$t_{1}=2.628\times 10^{111}$ $s$ or, $t_{1}=8.33\times 10^{103}$ $years$ Therefore, we have to wait $8.33\times 10^{103}$ $years$ for one proton to be transmitted.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.