Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 38 - Photons and Matter Waves - Problems - Page 1185: 77c

Answer

$15\%$

Work Step by Step

The probability that an electron of mass $m$ and energy $E$ will tunnel through a barrier of height $U$ and thickness $L$ is given by the transmission coefficient $T$ $T\approx e^{-2bL}$, ..............................$(1)$ where $b=\sqrt {\frac{8\pi^2m(U-E)}{h^2}}$ ..............................$(2)$ Given, $E=5.1$ $eV$, $U=U_{b}=6.8$ $eV$ Substituting the above values in equation $2$, we get $b=\sqrt {\frac{8\times\pi^2\times 9.1\times 10^{-31}\times(6.8-5.1)\times1.6\times 10^{-19}}{(6.63\times 10^{-34})^2}}$ or, $b\approx 6.668\times 10^{9}$ $m^{-1}$ As the change in kinetic energy is very small, we can write $\Delta T=\frac{dT}{dE}\Delta E$ ..............................$(3)$ Now, differentiating both side of eq, $(1)$ with respect to $E$, we get $\frac{dT}{dE}=-2Le^{-2bL}\frac{db}{dE}$ or, $\frac{dT}{dE}=-2LT\frac{db}{dE}$ ..............................$(4)$ Again, differentiating both side of eq, $(2)$ with respect to $E$, we get $\frac{db}{dE}=\sqrt {\frac{8\pi^2m}{h^2}}\frac{d}{dE}\sqrt {(U-E)}$ $\frac{db}{dE}=-\sqrt {\frac{8\pi^2m}{h^2}}\frac{1}{2\times \sqrt {(U-E)}}$ or, $\frac{db}{dE}=-\sqrt {\frac{8\pi^2m(U-E)}{h^2}}.\frac{1}{2(U-E)}$ or, $\frac{db}{dE}=-\frac{b}{2(U-E)}$ Thus, eq. $(4)$ becomes, $\frac{dT}{dE}=2LT\frac{b}{2(U-E)}$ And now eq. $(3)$ becomes, $\Delta T=2LT\frac{b}{2(U-E)}\Delta E$ or, $\frac{\Delta T}{T}=L\frac{b}{(U-E)}\Delta E$ ..............................$(5)$ Given, $L=750$ $pm$ $=750\times 10^{-12}$ $m$ $\Delta E=1\%$ of $E =0.01\times 5.1$ $eV$ $=0.051$ $eV$ Therefore, $\frac{\Delta T}{T}=750\times 10^{-12}\times\frac{6.668\times 10^{9}}{(6.8-5.1)}\times0.051$ or, $\frac{\Delta T}{T}=0.15$ or, $\frac{\Delta T}{T}=15\%$ Therefore, the percentage of change in the transmission coefficient is $15\%$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.