Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 38 - Photons and Matter Waves - Problems - Page 1185: 73

Answer

$ 4.84\;mA$

Work Step by Step

The reflection coefficient $R$ is given by $R=\frac{|B|^2}{|A|^2}=\frac{|k-k_b|^2}{|k+k_b|^2}$ where, $k=\frac{2\pi\sqrt {2mE}}{h}$ and $k=\frac{2\pi\sqrt {2m(E-U_b)}}{h}$ The transmission coefficient (the probability of transmission) is $T=1-R$ Putting the giving values, $k=\frac{2\times\pi\sqrt {2\times 9.1\times 10^{-31}\times \frac{1}{2}\times 9.1\times 10^{-31}\times 900^2}}{6.63\times 10^{-34}}\;m^{-1}=7.46\times 10^{6}\;m^{-1}$ and $k_b=\frac{2\times\pi\sqrt {2\times 9.1\times 10^{-31}\times (\frac{1}{2}\times 9.1\times 10^{-31}\times 900^2-1.6\times 10^{-19}\times 1.25\times 10^{-6})}}{6.63\times 10^{-34}}\;m^{-1}=5.25\times 10^{6}\;m^{-1}$ Therefore, $R=0.032$ $T=1-R=1-0.032=0.968$ Incident beam current is, $I_0=5\;mA$. Therefore, the transmitted current is given by $I_T=TI_0$ $\implies I_T=0.968\times5\;mA$ $\implies I_T=4.84\;mA$ Therefore, the current on the other side of the step boundary is $ 4.84\;mA$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.