Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 38 - Photons and Matter Waves - Problems - Page 1185: 74

Answer

$5.071$ $eV$

Work Step by Step

The probability that a given particle of mass $m$ and energy $E$ will tunnel through a barrier of height $U_{b}$ and thickness $L$ is given by the transmission coefficient $T$ $T\approx e^{-2bL}$, ..............................$(1)$ where $b=\sqrt {\frac{8\pi^2m(U_{b}-E)}{h^2}}$ ..............................$(2)$ Given, $T=0.0010$, $L=0.70$ $nm$$=7\times 10^{-10}$ $m$ and $U_{b}=6.0$ $eV$ Simplifying the equation $1$ and substituting the above values, we get $-2bL=\ln{T}$ or, $b=\frac{1}{2L}\ln{\frac{1}{T}}$ or, $b=\frac{1}{2\times 7\times 10^{-10}}\ln{\frac{1}{0.0010}}$ $m^{-1}$ or, $b\approx 4.93\times 10^{9}$ $m^{-1}$ Now simplifying equation $2$ and substituting the above values, we get $8\pi^2m(U_{b}-E)=b^2h^2$ or, $(U_{b}-E)=\frac{bh^2}{8\pi^2m}$ or, $(U_{b}-E)=\frac{(4.93\times 10^{9})^2\times (6.63\times 10^{-34})^2}{8\times\pi^2\times 9.1\times 10^{-31}}$ $J$ or, $(U_{b}-E)\approx 1.487\times 10^{-19}$ $J$ or, $(U_{b}-E)=0.929$ $eV$ $\therefore E=U_{b}-0.929$ $eV$ or, $E=6.0-0.929$ $eV$ or, $E=5.071$ $eV$ Therefore, the energy of an incident electron is $5.071$ $eV$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.