Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 38 - Photons and Matter Waves - Problems - Page 1185: 81

Answer

$\lambda=\frac{1.226}{\sqrt K}\;nm.eV^{1/2}$

Work Step by Step

The de Broglie wavelength $(\lambda)$ is express by the formula, $\lambda=\frac{h}{p}$, ......................$(1)$ where $h$ is the planck's constant and $p$ is the momentum of the moving particle. Again, using the classical equations for momentum ($p$) and kinetic energy ($K$), the relation between $p$ and kinetic energy $K$ of electron is $K=\frac{p^2}{2m}$ , where $m$ is the mass of the electron. Thus, $p=\sqrt {2mK}$ ......................$(2)$ Substituting eq. $2$ in eq. $1$, we get $\lambda=\frac{h}{\sqrt {2mK}}$ ......................$(3)$ or, $\lambda=\frac{h}{\sqrt {2m}\sqrt K}$ If $K$ is $eV$, then kinetic energy in electron-volts $\lambda=\frac{6.63\times 10^{-34}}{\sqrt {2\times 9.1\times 10^{-31}\times\times1.6\times 10^{-19}}\sqrt K}\;m.eV^{1/2}$ or, $\lambda=\frac{1.226\times 10^{-9}}{\sqrt K}\;m.eV^{1/2}$ or, $\lambda=\frac{1.226}{\sqrt K}\;nm.eV^{1/2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.